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The time expended on the process of vacuum-forced impregnation of porous layer 
with a viscoplastic liquid is calculated. The optimum regime for which this 
time is minimum is indicated. 

High-strength and moisture-resistant insulation of monoliths is used in electrical 
mining equipment, operating under conditions of high humidity [I]. In order to obtain it, 
porous paper or glass micaceous insulation is first subjected to evacuation, under which the 
pressure of air in pores decreases to some value Po, after which in a vacuum chamber (auto- 
clave) under a pressure Pf an epoxy compound is applied (the composition is based on the 
epoxy resin ED-22 and isomethyltetrahydrophthalic anhydride). The impregnated insulation is 
heated to the polymerization temperature of the compound (Tp ~ ]00~ as a result of which 
the monolith forms. Since the compound enters the insulation from all sides, the air re- 
maining in its pores is compressed, its pressure increases, and begins to retard further im- 
pregnation. At the same time, as this pressure increases the amount of air dissolved in the 
compound also increases, which permits carrying out complete impregnation of the insulation 
with incomplete preliminary evacuation. In order to increase the efficiency of the equipment 
used, it is necessary to shorten the time expended on the technological process of vacuum- 
forced impregnation indicated above as much as possible. For this purpose, the compound is 
heated (to a temperature Tf < Tp), since in this case its viscosity and initial pressure 
gradient decrease, while the percolation rate increases. On the other hand, the decrease in 
the evacuation time is related to the increase in Po and corresponding retardation of impreg- 
nation. Thus, in order to choose the optimum regime, it is necessary to determine the impreg- 
nation time as a function of the parameters of the process and of the residual pressure Po 
with which the total evacuation and impregnation time are minimum. 

The epoxy compound has viscoplastic properties and its percolation can be described by 
the generalized Darcy law [2, 3]: 

_ __k (V P + iv) for [vPI ~ ], ( 1 ) 

0 ~r [VPI<]. 

The u n i t  v e c t o r  v i s  o r i e n t e d  o p p o s i t e  t o  t h e  p r e s s u r e  g r a d i e n t .  The v i s c o s i t y  and i n i t i a l  
p r e s s u r e  g r a d i e n t  a r e  d e c r e a s i n g  f u n c t i o n s  o f  t e m p e r a t u r e :  

= ~ f ~  (o), ] = k ~  (o), o - T - -  To ( 2 )  
TI--To 

Adding to (I) the continuity equation for an incompressible fluid and the stationary 
heat-conduction equation 

div v = O, div • 0 = O, • = • (0), (3)  

we obtain the complete system of equations for the problem being examined. Here it is 
assumed that the thermal conductivity of the impregnated insulation practically coincides 
with the thermal conductivity of the compound and, for this reason, its temperature depen- 
dence is the same as that of the viscosity [4]. 

On the boundary of the porous medium and the compound, the following conditions are 
satisfied: 

P = P s ,  O =  1. (4)  
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Fig. i. Diagram illustrating 
the formulation of the problem. 

On the moving percolation front, the air pressure in the pores equals the sum of the fluid 
and capillary pressures, while the temperature satisfies the heat transfer condition: 

0O 
P = P~-- .Po,  ~ - n  + h 0  = 0, (5) 

where n is the normal to the surface of the front. In order to determine P~, we shall use 
the Clapeyron equation 

p ~ _  m~ RTo . ( 6 )  

~ V~ 
We shall assume that the air compression process is isothermal. According to Henri's 

law, the mass of the gas, dissolved per unit volume of liquid, is proportional to the excess 
pressure. Thus [5], 

m~ = m o - - c V o ( P ~ - - P o ) ,  (7) 

where c is a constant. At the time that impregnation ceases, all of the air must be dis- 
solved in the compound. In this case, its pressure, according to (7), will equal 

PL = (1 + k)Po, x - ~ (8 )  
cRTo 

Taking  i n t o  a c c o u n t  ( 6 ) - ( 8 ) ,  we o b t a i n  

vo I " (9) 

Let us examine the case of impregnation of a two-dimensional infinite layer with thick- 
ness 2L (see Fig. ]). In this case, the solution of Eqs. (1) and (3), satisfying the boun- 
dary conditions (4) and (5), has the form 

Here 

k i+ ] v - -  - -  ( P s  + P o  - -  P~ )  cI) (0~) - -  ] s P  (0~)  , 
~sF (0~) 

(0) = -~- a~ (0~). 

1 1 

(o) = .t" q do, F (o) = j  a0, 
0 0 

1 

0 

~o) 

1 1 )  

The value of 0 on the percolation front with x = ~(t) is determined, according to (5) and 
(|1), by the equality 

(0~ = h~O~. 1 2) 

Substituting into (I0) v = d~/dt, we find the time for complete impregnation of the layer in 

545 



the form of a quadrature 
L 

k v (Pj  + Pc - -  P~) �9 (0~) - i j ~ r  (o~) ( 1 3 )  
0 

For further calculations, it is necessary to give the functions ~ and ~. The viscosity of 
the liquids decreases exponentially depending on the inverse absolute temperature [6] 

= A exp (B/T), 

w h e r e  A and  B a r e  c o n s t a n t s  t h a t  c h a r a c t e r i z e  t h e  p r o p e r t i e s  o f  t h e  l i q u i d .  S i n c e  i n  o u r  
p r o b l e m ,  t h e  r e l a t i v e  c h a n g e  i n  t h e  a b s o l u t e  t e m p e r a t u r e  i s  s m a l l ,  t h i s  d e p e n d e n c e  i s  r e -  
p l a c e d  by a l i n e a r  d e p e n d e n c e .  T h u s ,  

q9 = p~*--(~t*--  1)0, ~* = .  ~t~ . (14)  

We shall give the function ~ in a similar manner: 

= ]* - -  ( i*  - -  1) o, i ,  - ./o 
.& 

The indices 0 and f label quantities corresponding to the temperatures To and Tf. 
and (12), we find 

(0) = - ~  (1 - -  0)[~* -}- 1 - - (~* - -  1) 0], 

F (0) = -~- -+- 1 - -  (~*  - -  1) (2~*  + 1) 0 -k- (~*  - -  1)z0z], 

I'(01 = 1 ( 1 - - 0 )  [2re*i* + ,a* § ]* § 2 - - ( 4 ~ * ] * -  ~ * - - . / * -  21 0-I-2(p~*- 11(] * l)0Z], (16) 

1 
0~ -- - -  (~* + h~-- VI + 2~*h~ + h~). 

[ ~ * - -  1 

(15) 

From (I I ) 

Equations ( 1 3 ) - ( 1 6 )  for fixed values of the parameters of the process Pf and To,f determine 
the impregnation time as a function of the residual air pressure in the pores. The latter 
practically coincides with the air pressure in the vacuum chamber [7] and for this reason its 
Variation with time under evacuation T = T(Po) is easily determined experimentally. Thus, we 
obtain the time expended on the entire process of vacuum-forced impregnation as a function of 

Po 

t + �9 = f (Po). (17)  

From the condition that the function f is minimum, we find the shortest time for the process 
examined and the corresponding optimum value of Po. For arbitrary values of the heat-transfer 
coefficient h, this problem can be solved only numerically. An analytic expression for t is 
obtained in the limiting cases h = 0 and h = ~. The first case corresponds to impregnation 
by a liquid with constant temperature T = Tf and the second occurs with the boundarY condi- 
tion T~ = To. 

The corresponding values of t have the form 

tl 2 =  toFl:2 [ 8~ 
' (]~1 ,2C1 /2 k 

, 2 + b - - ( 1 - - 2 a ) c i , 2  In b -~ cl ,2 -~ 61,2 

cl,261,2 b + cl,2 + 8 1 , 2 - -  2bcl,2 

Here 

+ 6 , , z - - b + ( 1 - - 2 a ) c l , 2  In b -]- Cl ,2 - -  01,2 - - 2 ] .  (18) 
ca,281,2 b + cl ,2 - -  01,2 - -  2bcl,2 

tO 

C1,2 : 

Po ~' ~fL2 , a , b -  
2k(Ps +Pc)  Pj + & 1 + E ' 

]yLP1,2 , 6j ,2 = ] / ( b - - c l  ,~)~ + 4abel ,2 , 
(PI + P~)q~ ,2 

1 
~ i  = Fl = r~ = 1, q~ --  - ~ - ( ~  + I), 
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TABLE 1. Dependence of the Evacuation (~, min) and Impregna- 
tion Times (t2, min) on the Magnitude of the Residual Pressure 
(Po, Pa) 

T I 14 I 18 I. 20 I 22 30 40 60 
Po.lO-al 0,143 / 0,043 I 0,018 I 0,009 I 0,005 ] 0,002 I 0,001 

t~ I 128,5 [ 64,5 I 60,5 I 59,11 58,7 I 58,3 I 58,2 

1 z 1 

The quantity to represents the impregnation time of the layer of a usual Newtonian liquid 
(j = 0) at constant temperature (h = 0) and complete evacuation (Po -- 0). The impregnation 
time for arbitrary h satisfies the obvious inequality t1~ t ~t2. 

The maximum permissible value of Po is determined by the equality 

1 - -  c 2 a -- , (19) 

for which t2 becomes infinite. As an example, we shall present a calculation of the vacuum- 
forced impregnation of a layer of glass--micaeeous cloth with the following data: h = ~, % = 
I0, Pf = 3"105 Pa, Pc = 0, L = 10 -3 m, k/Df = 0.2"10 -14 m2/Pa'sec, jf = 3.4"107 Pa/m, Tf = 
60~ k/Do = 0.05"10 -14 ma/Pa'sec, jo = 21-3 "107 Pa, To = 30~ 

The maximum value of Po, according to (19), equals 0.144 x 105 Pa. The layer was eva- 
cuated in an autoclave with a volume of 1.2 m 3 with the help of a type VN-4G vacuum pump with 
a capacity of 59 liters/sec. The air pressure was measured by a MTI manometer. The results 
of these measurements and the corresponding values of the impregnation time, determined accor- 
ding to Eq. (18), are presented in Table I. 

It follows from the table that the shortest time for the technological process being 
examined corresponds to a residual air pressure of 0.018.10 s Pa and equals 80.5 min. 

In conclusion, we note that the problem examined can be generalized to the case of con- 
tinuous technological process of vacuum-forced impregnation, for which the heated porous 
layer enters into the impregnation chamber at a constant velocity. The impregnation of such 
a layer with the usual viscous liquid without taking into account the solubility of air was 
examined in [8]. 

NOTATION 

v, percolation rate; P, compound pressure; Pc, capillary pressure; D, viscosity of the 
compound; j, initial pressure gradient; k, permeability of the porous medium; To, temperature 
of the porous medium before impregnation; Tf, temperature of the compound; ~, dimensionless 
temperature; • thermal conductivity of the compound; ~, coordinate of the impregnation front; 
0~, P~, m~,.V~, temperature, pressure, mass, and volume of air, respectively, at x = ~; Dm, 
molecular alr weight; R, universal gas constant; h, heat-transfer coefficient; t, impregna- 
tion time; t~,=, impregnation time at h = 0 and h = ~, respectively; T, evacuation time. 
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A procedure is presented for determining the spectral emissivity and surface tem- 
perature of heat shield materials subjected to radiant~onvective heating by 
using the radiant component of the heat flux. 

In order to determine the temperature of a surface and to calculate the heat balance, it 
is necessary to know the emittance of the material under investigation. It depends on many 
parameters, such as the properties of the material itself, the structure of the surface, the 
temperature, and the wavelength and direction of propagation of the radiation. Performing 
calculations which take account of the direction and wavelength dependence of the radiative 
characteristics of a material is a rather tedious process even when very large computers are 
used [I]. However, the reflection indicatrices of many heat shield materials correspond to 
diffuse radiation within an angle of ~50 ~ from the normal to the working surface [2]. It was 
shown in [3] that the directional dependence of the optical properties of a surface must be 
taken into account only for specularly or nearly specularly reflecting surfaces, and that a 
simple model of diffuse reflection gives values which are in good agreement with a more de- 
tailed analysis and with existing experimental data. 

It follows from the energy balance for an irradiated surface of an opaque material and 
Kirchhoff's law that 

p ( ~ ) =  1 - - e ( ~ ,  

from which the emittance of a surface can be found by using the reflection method [I, 4]. 

The measurement of the temperature of a surface subjected to radiant-convective heating 
requires taking account of or completely eliminating high fluxes of reflected radiation. 
This is commonly done by using choppers to separate the self- and reflected radiation from a 
surface [5]. The total intensity of the radiation from the sample surface is measured, and 
then while the incident radiation is cut off by the chopper, the intensity of the self- 
radiation from the material is measured. By measuring the intensity of the radiation re- 
flected from the surface of a standard, the intensity of the radiation incident from the 
radiant heating source is determined. From these data and the formula for the heat balance, 
the reflectance of the surface of the material is 

~0 (x) 
where  gZ(X) = ~ s e l f ( X )  + ~ r e f l ( X ) .  

The t r u e  t e m p e r a t u r e  o f  t h e  s u r f a c e  i s  d e t e r m i n e d  w i t h  a f o r m u l a  which  f o l l o w s  f rom 
Wien's law: 

(1) 
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